Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Herbert Meier*, Hans-Joachim Bissinger, Anita Vierengel

Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany

ARTICLE INFO

ABSTRACT

Article history: Received 6 January 2010 Revised 2 February 2010 Accepted 3 February 2010 Available online 11 February 2010 (1*E*,5*E*)-Cyclopentadeca-1,5-dien-3-yne (**1c**), which represents the first macrocyclic 1,5-dien-3-yne, can be obtained by thermal- or butyllithium-induced fragmentation of the corresponding 1,2,3-selenadiazole **8**. The (*E*,*E*)-dienyne functionality causes a geometrical strain E_g , which enhances the reactivity in addition (**1c**→**12**,**13**) and cycloaddition (**1c**→**10**) reactions and lowers the isomerization barrier to the unstrained (*E*,*Z*)-configuration **1d** (E_g = 0). A slow process **1c**→**1d** occurs even at ambient temperatures within several weeks.

© 2010 Elsevier Ltd. All rights reserved.

etrahedro

Open-chain 1,5-dien-3-ynes are a well-known class of compounds with various applications in organic synthesis. Cyclization reactions to carbo- and heterocycles and cycloadditions, including Domino–Diels–Alder reactions, represent prominent examples for the reactivity of 1,5-dien-3-ynes.¹ Moreover, such dienynes are substructures of many carotenoids. On the contrary, very few cyclic 1,5-dien-3-ynes **1** have been studied.^{2–5} In particular, the highly reactive cycloocta-1,5-dien-3-yne (**1a**)⁶ and the 12-membered ring system **1b**,⁷ which contains a further CC double bond, should be mentioned (Fig. 1).

Force field calculations and model studies revealed that the border line between 1,5-dien-3-ynes with and without angle strain (geometrical strain E_g) depends strongly on the configuration of the two double bonds.⁷ $E_g = 0$ should be realized in 10-, 11-, or higher ring system for (*Z*,*Z*) configurations, in 13-, 14-, or higher rings for (*E*,*E*) configurations. The larger the macrocyclic rings are, the more the ring strain can be distributed to bond angles, bond lengths, etc. This encouraged us to synthesize (1*E*,5*E*)-cyclopentadeca-1,5-dien-3-yne (**1c**).

We started the preparation with 3,14-dihydroxycyclopentadecan-1-one (**2**), a compound, which was used for the preparation of muscone and exaltone.⁸ The dehydration of **2** with *p*-toluenesulfonic acid yielded (2*E*,14*E*)-cyclopentadeca-2,14-dien-1-one (**3**) as a primary product (Scheme 1). The isomeric dienones **5** and **6** are secondary products, which were generated by acid catalysis (**3**→**5**,**6**).⁹ A comparably slower consecutive reaction yielded the bicyclic enone **4** by a Nazarov¹⁰ cyclization (**3**→**4**). (2*E*,13*E*)-Cyclopentadeca-2,13-dien-1-one (**5**) was the major component (70–80% of the mixture **3**/**4**/**5**/**6**).¹¹ It could be purified by column chromatography (SiO₂, *n*-hexane/acetone gradient) and was obtained in a yield of 60–68% related to **2**. Dienone **5** was then transformed

Figure 1. Cycloalka-1,5-dien-3-ynes.

into its semicarbazone **7**, which exists as *syn–anti* mixture (2:1).¹² The reaction of **7** and SeO₂ afforded 1,2,3-selenadiazole **8**,¹³ which represented the precursor for the desired dienyne **1c**. The fragmentation of **8** could be performed by thermolysis on Cu powder at 180 °C and 5–10 Pa (yield 54%) or by a very short treatment with *n*-butyllithium at -70 °C (yield 46%).¹⁴ Thermolysis at higher pressure (~100 Pa) led to longer contact periods in the hot zone and to an isomerization of the strained ring system **1c** to the unstrained (*E*,*Z*)-dienyne **1d** (*E*_g = 0). The *E*→*Z* isomerization works even at room temperature with a half-life of about 20 d, which corresponds to a surprisingly low activation barrier for a stereoisomerization of an olefinic double bond. The second (*E*)-configured double bond is stable, since **1d** does not have a geometrical strain.

When 1,2,3-selenadiazole **8** was refluxed in *p*-xylylene in the presence of tetraphenylcyclo pentadienone (**9**), 32% of the trapping product **10** was obtained (Scheme 2).¹⁵ The isolated alkyne **1c** reacted even at room temperature to yield 65% **10**.

Treatment of **1c** with *n*-BuLi in *n*-hexane between $-70 \degree C$ and room temperature gave a mixture of addition products. In principle, two types of 1,2-additions, a 1,4-addition and a 1,6-addition seem to be possible (Scheme 3). Apart from oligomerizations, we established a chemoselective 1,2-addition to the triple bond, which yielded an (*E*,*Z*,*E*)-triene, (**1c** \rightarrow **12**) and a regioselective 1,4-addition to a vinylallene (**1c** \rightarrow **13**). The oily mixture could be separated by

^{*} Corresponding author. Tel.:+49 6131 3922605; fax: +49 6131 3925396. E-mail address: hmeier@mail.uni-mainz.de (H. Meier).

^{0040-4039/\$ -} see front matter \circledcirc 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.02.013

Scheme 1. Preparation of the cyclopentadeca-1,5-dien-3-ynes 1c and 1d. Reagents and conditions: (i) *p*-TsOH, toluene, 110 °C; (ii) H₂N–NH–CONH₂·HCl, NaOAc, EtOH, 78 °C; (iii) SeO₂, dioxane/H₂O (100:1), 25 °C; (iv) Cu, 180 °C, 5-10 Pa; (v) *n*-BuLi/*n*-hexane, 5 s at -70 °C; (vi) 25 °C, ca. 30 d or from 8 at 180 °C and 100 Pa.

Scheme 2. Cycloaddition reaction of isolated or in situ-formed 1c and tetraphenylcyclopentadienone 9.

Table 1

 1 H and 13 C NMR data of **1c**, **1d**, **12**, and **13** (δ values in CDCl₃, TMS as internal standard, δ (¹³C) values within 1.0 ppm are interchangeable)

Compd	Olefinic and acetylenic positions						CH_2 (CH_3)
	a	b	с	d	e	f	
1c	6.12ª	5.50 ^a	02.0	02.0	5.50	6.12	2.16 (4H), 1.46 (4H), 1.34–1.18 (10H) 22 1, 21 8, 20 7
	140.7	110.5	95.0	95.0	110.5	140.7	28.4, 27.0
1d	6.15 ^b	5.58 ^b			5.51 ^c	6.12 ^c	2.23 (2H), 2.16 (2H), 1.48-1.20 (14H)
	146.0	110.4	93.9	85.9	110.3	144.4	32.9, 29.5, 28.5, 28.2, 28.2, 27.7, 26.8, 26.7, 26.2
12	5.65	6.15		5.82	6.36	5.58	2.11 (6H), 1.40-1.18 (18H), 0.87 (3H,CH ₃)
	131.3	128.9	138.9	128.3	125.3	132.3	35.8, 31.1, 30.9, 29.8, 27.9, 27.9, 27.4 27.2, 27.0, 26.6, 25.9, 22.5, 14.0 (CH ₃)
13	5.60	5.80	5.71		4.93	2.09	2.08 (2H), 1.38– 1.17 (22H), 0.87 (3H_CH ₂)
	131.4	126.5	92.7	206.5	96.2	39.7	35.8, 34.8, 31.8, 29.8, 28.7, 28.1, 27.6, 27.3, 27.2, 26.6, 26.3, 22.7, 14.1 (CH ₃)

 ${}^{3}J_{\text{trans}} = 15.4 \text{ Hz}.$

^b ${}^{3}J_{\text{trans}} = 15.3 \text{ Hz.}$

 c $^{3}J_{cis} = 10.1$ Hz.

column chromatography (SiO₂, *n*-pentane) and gave first 15% pure **13** and then 12% pure **12**. Within the detection limit of 3%, we could exclude the presence of **11** and **14** in the product mixture.¹⁶

The unstrained dienyne **1d** has a much lower reactivity. It did not add *n*-BuLi at room temperature, in *n*-hexane at 60 °C a lot of oligomers and 15% of **13** were formed.

The hydrocarbons **1c**, **1d**, **12**, and **13** are colorless oils. Their ¹H and ¹³C NMR data are listed in Table 1.¹⁷ The reactivity of these highly unsaturated compounds makes them together with the known macrocyclic 1,3-dien-5-ynes^{18,19} interesting candidates for the synthesis of further macrocyclic systems.

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References and notes

- 1. Altogether more than 2000 hits of (*E*,*E*)-, (*E*,*Z*)- and (*Z*,*Z*)-alka-1,5-dien-3-ynes are listed in reaction data banks.
- 2. Hopf, H. Classics in Hydrocarbon Chemistry; Wiley-VCH: Weinheim, 2000. Chapter 8.
- Stang, P. J.; Diederich, F. Modern Acetylenic Chemistry; Wiley-VCH: Weinheim, 1995.
- 4. Meier, H. In Advances in Strain in Organic Chemistry; Halton, B., Ed.; JAI: London, 1991; Vol. 1, pp 215–272.

- See also: Heber, D.; Rösner, P.; Tochtermann, W. Eur. J. Org. Chem. 2005, 4231– 4247.
- 6. Echter, T.; Meier, H. Chem. Ber. 1985, 118, 182-197.
- Meier, H.; Hanold, N.; Molz, T.; Bissinger, H. J.; Kolshorn, H.; Zountsas, J. Tetrahedron 1986, 42, 1711–1719.
- 8. Tsuji, J.; Yamada, T.; Shimizu, I. J. Org. Chem. 1980, 45, 5209-5252.
- 9. Büchi, G.; Wüest, H. Helv. Chim. Acta 1979, 62, 2661-2672.
- 10. Nazarov, I. N. Usp. Khim. 1951, 20, 71-103. and Usp. Khim. 1949, 18, 377-401.
- 11. The portion of **5** in a basic medium is lower.
- Yield 65%; mp 166 °C. ¹H NMR (CDCl₃): *δ* 8.39 (s, 1H, NH of *anti* configuration)/ 8.07 (s, 1H, NH of *syn* configuration, proved by NOE measurement), 6.24–5.91 (m, 2H, 2-H, 3-H), 5.15–5.50 (m, 2H, 13-H, 14-H), 3.06 (m, 2H, 15-H), 2.25–1.92 (m, 4H, 4-H, 12H), 1.18–1.28 (m, 14H, 5-H, 6-H, 7-H, 8-H, 9-H, 10-H, 11-H).
- 13. 7,8,9,10,11,12,13,14-Octahydro-(4*E*,15*E*)-6*H*-cyclo-pentadeca-1,2,3-selenediazole: oil, yield 26%. ¹H NMR (CDCl₃): δ 6.72 (dt, ³*J* = 16.0 Hz, ⁴*J* = 1.4 Hz, 1H, 4-H), 6.53 (dt, ³*J* = 15.6 Hz, ⁴*J* = 1.4 Hz, 1H, 16-H), 6.40 (dt, ³*J* = 16.0 Hz, ³*J* = 7.0 Hz, 1H, 5-H), 6.10 (dt, ³*J* = 15.6 Hz, ³ = 7.0 Hz, 1H, 15-H), 2.35 (m, 2H, 6+H), 2.24 (m, 2H, 14-H), 1.62-1.10 (m, 14H, 7-H, 8-H, 9-H, 10-H, 11-H, 12-H, 13-H).
- 14. To the fragmentation processes see Ref. 4–7.
- 15. Mp 226 °C, ¹H NMR (CDCl₃): δ 6.98 (m, 10H, aromat. H), 6.77 (m, 10H, aromat. H), 6.18 (d, ³*J*_{trans} = 16.2 Hz, 2H, 5-H, 17-H), 5.21 (dt, ³*J*_{trans} = 16.2 Hz, ³*J* = 6.8 Hz, 2H, 6-H, 16-H), 1.83 (m, 4H, 7-H, 15-H), 1.38–1.23 (m, 12H, 8-H, 9-H, 10-H, 11-H, 12-H, 13-H, 14-H). EI MS (70 eV): m/z (%) = 559 (100) [M+H⁺].
- 16. With the same limit of detection, we could exclude the generation of 1-butylcyclopentadeca-1,3,5-triene and 1-butyl-cyclopentadeca-1,2,4-triene. Both should be thermodynamically more stable isomers of **13**.
- 17. *E* and *Z* configurations of the olefinic double bonds in **1c**, **1d**, **12**, and **13** can be easily distinguished by the vicinal coupling constants: ${}^{3}J_{trans} = 15.4 \pm 0.2$ Hz, ${}^{3}J_{cis} = 10.1 \pm 0.1$ Hz. The central double bond in **12** has *Z* configuration, which was proved by a positive NOE between 4-H and α -CH₂ on C-3.
- 18. Hopf, H.; Krüger, A. Chem. Eur. J. 2001, 7, 4378-4385.
- 19. Prall, M.; Krüger, A.; Schreiner, P. R.; Hopf, H. Chem. Eur. J. 2001, 7, 4386-4394.